

Commercial Radioisotope Solutions for Lunar Thermal Management, Watt Scale Electricity, X-Ray Remote Sensing and More

Lunar Surface Innovation Consortium Power Monthly Telecom

Christopher Morrison Ph.D. EmberCore™ Product Lead c.morrison@usnc-tech.com
Public Release

October 28, 2021

USNC-Tech Designs and Builds Novel Nuclear Systems

Permanent power, mobile power, and industrial heat

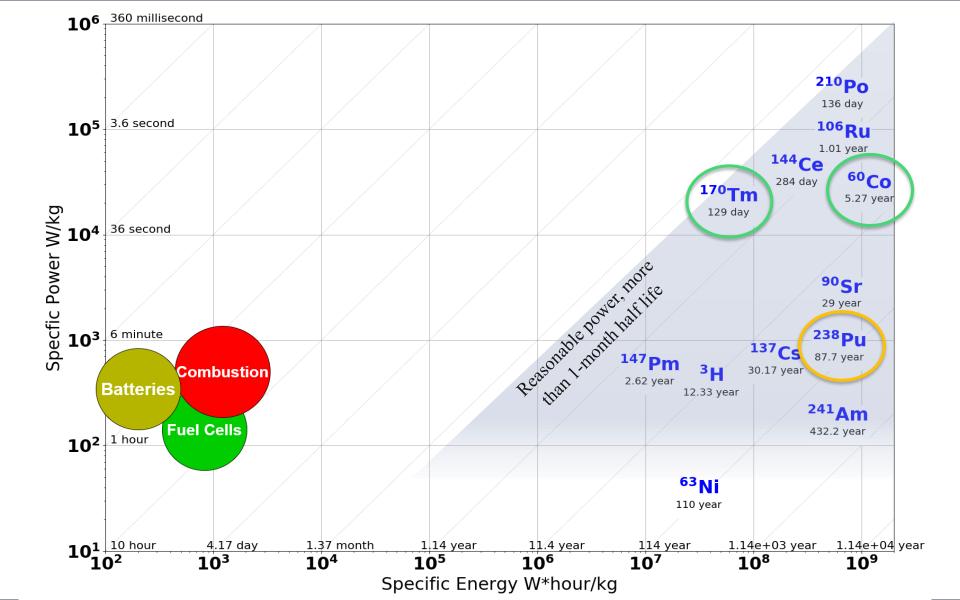
Surface fission power reactor for Space

Power for ISRU, life-support, mining, reprocessing of materials

Nuclear Thermal Propulsion (NTP) reactor

High Thrust High ISP Propulsion

Nuclear Electric Propulsion (NEP) reactor


Exploration of the Solar System

Nuclear Batteries

Long term reliable atomic batteries for space and terrestrial markets

Commercial Product – EmbercoreTM – AA Heat Battery of the Future

	Compact volume/surface area	Ember	21 U EmberCore™ Stack	EmberCore™
Safety	Multiple encapsulationRegulatory/launch approval focused	Precursor	Tungsten Liner	Aeroshell Stack
Cost Effective	Charge and go (no radiochemistry)Affordable raw materials, commercial radioisotopes			
Modular	 Compatible with different radioisotope & power needs Pack designs for heat, electricity, or x-rays 	Wall	Embers	DU Shield
Technology Maturation	 Lunar Heater Product TRL 6 Plan for 2023 and flight in late 2023/2024 based on Tm-170 		Analogy	
iviaturation	• First Isotope Production Next Month	1994	DUNACELL DUNACELL	
Patents	WO/2021/159043WO/2021/159041	AAA maado Lay Usia	DunACELL DunACELL	
Chargeable Atomic Ceramic - Manufacturing Process			Size	

• Up to 1 million x the energy density of Li-ion

1 - 30 W_{th} Tm Ember

Performance

Survive the Lunar Night (Heat) 20 W_{th} x 384 hours => 7.68 kWh

384 Hour Day 400 K

Traditional Batteries

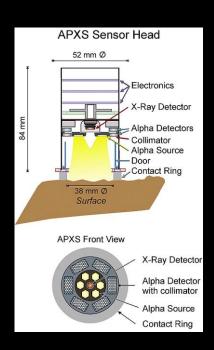
125 Wh/kg => 60 kg 300 Wh/liter => 26 liters

VS.

EmberCoreTM 4-8 kg (5-15 x)

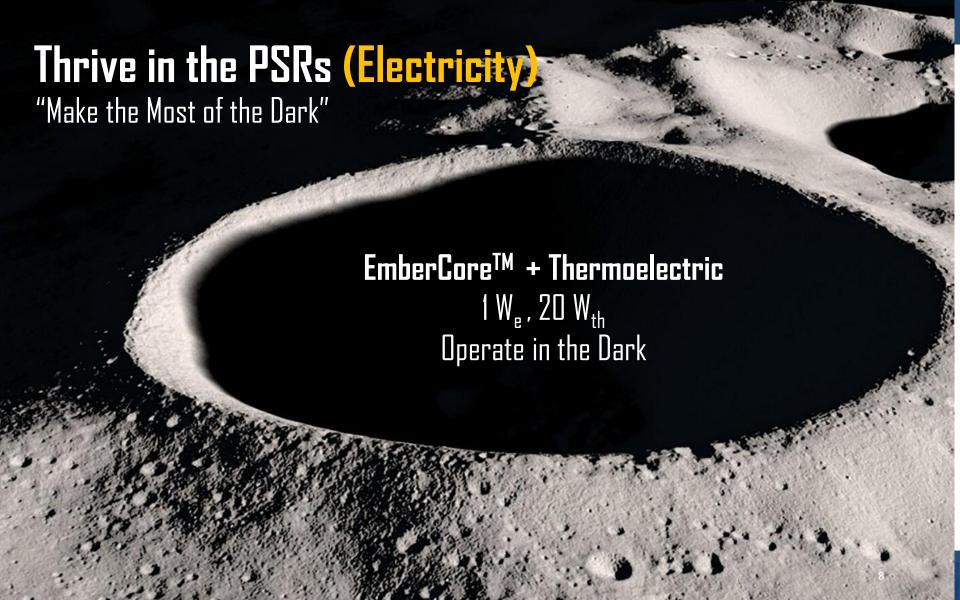
0.4-1.0 liters (25-100x

50 K **384 Hour Night**



Survey the Lunar Environments (X-Rays)

MER AXPS 0.030 Ci Cm-244 Source



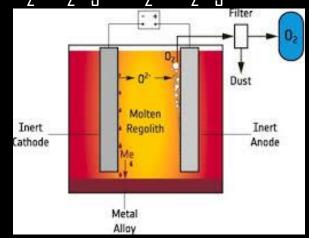
VS.

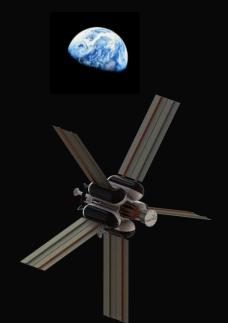
EmberCoreTM + Detector

10 kCi Tm-170 Source (400,000 x)

- Columnated x-ray laser allows for remote detection
- Strong source reduces counting time
- X-Ray backscattering allows for surface penetrating elemental analysis reducing need for drilling
- XRF/XRD methods for elemental and chemical analysis
- Additional isotopes available for custom photon spectrum for desired analysis
- Drive a rover through a PSR and characterize top few cm of ice/regolith
- Combine with other wavelengths (visible, IR, UV) for improved detection

ISRU on the Moon (Temperature)


EmberCoreTM Temperatures >2000 K


Volatiles Melt ~300 K H_2O , CO_2 , NO_2 , NH_3 , CH_4 , etc.

Regolith Melt ~ 2,000 KSiO₂, Al₂O₃, TiO₂, Cr₂O₃, FeO, etc.

Travel in Cislunar Space and Beyond (Propulsion)

EmberCoreTM Radioisotope Electric Propulsion

100 km/s 20 kg payload <10 kg/kW_e

Extra Solar Object Sample Return NIAC

Lunar Applications

Heater 1-300 W_{th}

Looking For

Lunar Night Survival

Electric Power 1-100 W_e

- Mobile or stationary platforms
- Long term science stations such as the lunar Gravitational Wave Observatory

ISRU (1800 – 2500 K)

Process heat applications

X-Ray/Remote Sensing

Elemental and chemical assay

Position Navigation & Timing

- Passive X-Ray navigation beacons
- Active communication stations

Users/Partners

- Are we a good fit for your science application or commercial need?
- Flight Opportunities as soon
 - Opportunities as soon as Mid-2024
 - Landers/Rovers/Payloads
 - Open to proposals

Contact

Christopher Morrison Ph.D. EmberCore™ Product Lead c.morrison@usnc-tech.com

